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In recent experiments, localized and stationary optical wave packets have been generated in second-order
nonlinear processes with femtosecond pulses, whose asymptotic features relate to those of nondiffracting and
nondispersing polychromatic Bessel beams in linear dispersive media. We investigate the nature of these linear
waves and show that they can be identified with the X-shaped(O-shaped) modes of the hyperbolic(elliptic)
wave equation in media with normal(anomalous) dispersion. Depending on the relative strengths of mode
phase mismatch, group velocity mismatch with respect to a plane pulse, and the defeated group velocity
dispersion, these modes can adopt the form of pulsed Bessel beams, focus wave modes, and X waves(O
waves), respectively.
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I. INTRODUCTION

Stationary, temporally, and spatially localized, X-shaped
optical wave packets, having a duration of a few tens of
femtoseconds and spot size of a few microns, have been
recently observed to be spontaneously generated in disper-
sive nonlinear materials from a standard laser wave packet
[1–3]. Balancing between second-order or Kerr nonlinearity,
group velocity dispersion, and angular dispersion and dif-
fraction has been suggested to act as a kind of mode-locking
mechanism that drives pulse reshaping and keeps the inter-
acting waves trapped and phase and group matched[4–6].

The purpose of the present paper is to investigate the na-
ture of these waves. The main hypothesis underlying our
investigation is that these nonlinearly generated X-shaped
waves behave asymptotically as linear waves. This assump-
tion is based, first, on the observed stationarity, not only of
the central hump of the wave packet, but also of its
asymptotic, low-intensity, conical part[1–3], stationarity that
cannot be attributed to nonlinear wave interactions, but to
some linear mechanism of compensation between material
and angular dispersion. Indeed, several kinds of linear poly-
chromatic versions of Bessel beams[7], such as Bessel-X
pulses[8,9], pulsed Bessel beams[10,11], subcycle Bessel-X
pulses or focus wave modes[12], and envelope X waves
[13], with the capability of maintaining transversal and tem-
poral (longitudinal) localization in linear media with normal
group velocity dispersion(GVD), have been described in
recent years(for a unified description and an extension to
media with anomalous dispersion, see also Ref.[14]). In
contrast to free-space X waves[15] and Bessel-X pulses
[16,17], stationarity in dispersive media requires the intro-
duction of an appropriate amount of cone-angle dispersion
that leads to the cancellation of material GVD with cone-
angle dispersion-induced GVD[8–14]. Second, polychro-
matic Bessel beams, with or without angular dispersion[14],
have the ability of propagating at rather arbitrary effective
phase and group velocities in dispersive media, as has to be
done by the phase-matched and mutually trapped fundamen-

tal [3] and second-harmonic[5] nonlinearly generated X
waves.

For these reasons, in this paper we present a more com-
prehensive description of localized and stationary optical
waves in linear dispersive media, henceforth calledwave
modes, which is particularly suitable for understanding and
predicting the spatiotemporal features of the nonlinear X
waves generated in experiments. From a linear point of view,
this description allows us to predict the existence of new
kinds of wave modes and classify all of them according to
the values of a few physically meaningful parameters.

Each wave mode is specified by the values of the defeated
material GVD, the mode group velocity mismatch(GVM),
and phase mismatch(PM) with respect to a plane pulse of
the same carrier frequency in the same medium. Wave modes
are then shown(Sec. II) to belong to two broad categories:
hyperbolic modes, with X-shaped spatiotemporal structure, if
material dispersion is normal, or elliptic modes, with
O-shaped structure, if material dispersion is anomalous[18].
In Sec. III we show that each wave mode can adopt the
approximate form of(1) a pulsed Bessel beam(PBB), (2) an
envelope focus wave mode(eFWM), or (3) an envelope X
(eX) wave in normally dispersive media[envelope O(eO)
wave in anomalously dispersive media], according to
whether the mode bandwidth makes PM, GVM, or defeated
GVD, respectively, to be the dominant mode characteristic of
propagation. This classification allows us to understand the
spatiotemporal features of wave modes in dispersive media
in terms of a few parameters(the characteristic PM, GVM,
and GVD lengths), including modes with mixed pulsed
Bessel, focus wave mode, and X-like(O-like) structure.

The above description is obtained from the paraxial ap-
proximation to wave propagation. We choose this approach
because of its wider use in nonlinear optics and because it
leads to simpler expressions in terms of parameters directly
linked to the physically relevant properties of the mode and
dispersive medium. In Sec. IV we compare the paraxial and
more exact nonparaxial approaches to show that the paraxial
approach is accurate enough for the description of wave
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modes currently generated by linear optical devices[9,10]
and in nonlinear wave mixing processes[1–3].

II. WAVE MODES OF THE PARAXIAL WAVE EQUATION

We start by considering the propagation of a three-
dimensional wave packetEsx' ,z,td=Asx' ,z,tdexps−iv0t
+ ik0zdfx';sx,ydg of a certain optical carrier frequencyv0,
subject to the effects of diffraction and dispersion of the
material medium. Within the paraxial approximation and up
to second order in dispersion, the propagation of narrow-
band pulses is ruled by the equation

]zA =
i

2k0
D'A − i

k09

2
]t

2A, s1d

where z is the propagation direction,t= t−k08z is the local
time, D';]x

2+]y
2, andk0

sid;]v
sidksvduv0

, with ksvd the propa-
gation constant in the medium. Equation(1) is valid for a

narrow envelope spectrumÂsx' ,z,Vd around V;v−v0

=0 — that is, for bandwidths

DV ! v0, s2d

a condition that requires at least few carrier oscillations to
fall within the envelopeA.

We search for stationary and localized solutions of Eq.(1)
in the wide sense that theintensitydoes not depend onz in a
reference frame moving atsome velocity. These solutions
must then be of the form

Asx,y,t,zd = Fsx,y,t + azdexps− ibzd. s3d

The free parametersa andb are assumed to be small in the
sense that

uau ! k08, s4d

ubu ! k0, s5d

so that the group velocity 1/sk08−ad and phase velocity
v0/ sk0−bd of the wave differ slightly from those of a plane
pulse of the same carrier frequency in the same material,
1 /k08 andv0/k0, respectively.

Under the assumption of asymptotic linear behavior of
nonlinear X waves, we can get some insight into the possible
values ofa andb of nonlinear X waves on the only basis of
the linear dispersive properties of the medium. If, for in-
stance, a pulse of frequencyvF generates a stationary and
localized second-harmonic pulsesv0=2vFd traveling at the
same group and phase velocities as the fundamental pulse
[5], we must havek08−a=kF8 and k0−b=2kF —that is, a
=kF8 −k08 and b=Dk;k0−2kF. For illustration, Fig. 1 shows
the values ofa and b of the second-harmonic pulse in
lithium triborate(LBO) as a function of its carrier frequency
v0. Note also thatuau and ubu satisfy the conditions(4) and
(5) for any carrier frequency in the entire visible range and
beyond.

In Sec. IV, a nonparaxial approach to the problem stated
above will be performed. It will be shown that the paraxial
and nonparaxial descriptions yield substantially the same re-

sults if conditions(2), (4), and(5) are satisfied, as is the case
of the experiments and numerical simulations demonstrating
the spontaneous generation of X-type waves[1–3].

Equation(1) with ansatz(3) yields

D'F − k0k09]t
2F + 2ik0a]tF + 2k0bF = 0, s6d

as the differential equation for the reduced envelopeF of the
wave modes. Equation(6) is a hyperbolic differential equa-
tion in normally dispersive media and an elliptic differential
equation in media with anomalous dispersion[20]. For the

temporal spectrumF̂sx,y,Vd of the reduced envelope
Fsx,y,t+azd, Eq. (6) yields the Helmholtz-type equation

D'F̂+K2sVdF̂=0, where

KsVd =Î2k0Sb + aV +
1

2
k09V

2D s7d

will be referred to as the(transversal) dispersion relation
since it relates the modulusK of the transversal component
of the wave vector with the detuningV of each monochro-
matic wave component from the carrier frequencyv0. For V
such thatKsVd is real, the Helmholtz equation admits the
bounded, cylindrically symmetric, Bessel-type solution

F̂sr ,Vd= f̂sVdJ0fKsVdrg, where f̂sVd is an arbitrary spectral
amplitude andJ0s·d the Bessel function of zero order and first
class [21]. By inverse Fourier transform we can write the
expression

Fa,bsr,t + azd =
1

2p
E

KsVdreal
dV f̂sVdJ0KfsVdrg

3expf− iVst + azdg s8d

for the reduced envelope of the cylindrically symmetric
wave modes, or localized, propagation invariant solutions of
the paraxial wave equation, in the sense explained above. As
indicated, the integration domain extends over frequenciesV
such that the dispersion curveKsVd is real. According to Eq.

FIG. 1. Values ofa and b of the localized and stationary,
second-harmonic waves of different carrier frequenciesv0 for
phase and group matching with the fundamental wave in the pro-
cess of oo-e second harmonic generation in LBO at room tempera-
ture. Dispersion formulas for the refraction index are taken from
Ref. [19].
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(8), a wave modeFa,b is composed of locked monochro-
matic Bessel beams whose frequencies and radial wave vec-
tors are linked by a specific dispersion relationKsVd and
whose relative weights are determined by a certain spectral

amplitude f̂sVd.
As shown in Figs. 2(a) and 2(b), the form of the disper-

sion curveKsVd reflects the underlying hyperbolic or elliptic
geometries of the differential equation(6) for wave modes in
the respective cases of propagation in media with normal or
anomalous dispersion. For normal dispersionsk09.0d, KsVd
is in fact a single-branch vertical hyperbola ifb.a2/2k09
and a two-branch horizontal hyperbola ifb,a2/2k09 [see
Fig. 2(a)]. For anomalous dispersionsk09,0d, KsVd takes
real values only ifb.a2/2k09, in which case the dispersion
curve is an ellipse[see Fig. 2(b)]. It is also convenient to
introduce the(real or imaginary) frequency gap

Vg ;Î a2

k09
2 −

2b

k09
s9d

and radial wave vector gap

Kg ; Î− k0k09Vg
2. s10d

When Vg and Kg are real, they represent actual frequency
and radial wave vector gaps in the dispersion curveKsVd, as
illustrated in Fig. 2. In any case, their moduli characterize the
scales of variation of the frequency and radial wave vector in
the dispersion curves.

Closely connected with the dispersion curve are the so-
called impulse responsewave modesFa,b

sid sr ,t+azd or

modes withf̂sVd=1. As seen in Fig. 3, the structure ofFa,b
sid

in space and time closely resembles that of the dispersion
curve in theK-V plane and, hence, the hyperbolic or elliptic
nature of the differential equation for wave modes[20], but
at radial and temporal scales of variation characterized by the

reciprocal quantitiesuKgu−1 anduVgu−1, respectively. Equation

(8) with f̂sVd=1 and the changeV8=V+a /k09 yields

Fa,b
sid sr,z,td =

1

2p
E

KsV8dreal
dV8J0fKsV8drg

3expf− iV8st + azdgexpFi
a

k09
st + azdG ,

s11d

where

KsV8d =Îkk09SV82 +
2b

k09
−

a2

k09
2D . s12d

The integral in Eq.(11) can be performed in all possible
cases from formulas 6.677.3(for k09.0, b.a2/2k09), 6.677.2
(for k09.0, b,a2/2k09), and 6.677.6(for k09,0, b.a2/2k09)
of Ref. [21], to yield the closed-form expression for impulse
response modes,

Fa,b
sid sr,t + azd

=
1

2p
F 1

Îk0k09r
2 − st + azd2

exp

3HiFÎ2b

k09
−

a2

k09
2
Îk0k09r

2 − st + azd2GJ + c.c.G
3expF ia

k09
st + azdG s13d

or, in terms of the frequency and radial wave vector gaps,

Fa,b
sid =

1

2p
FVg

expsiRd
iR

+ c.c.GexpF ia

k09
st + azdG , s14d

whereR=fKg
2r2+Vg

2st+azd2g1/2.
As shown in Fig. 3(a), for k09.0 and b.a2/2k09 (Vg

imaginary andKg real), the impulse response wave mode is
singular in the coner = ust+azdu /Îk0k09, is zero for r , ust
+azdu /Îk0k09 (within the cone), and decays as 1/r for
r . ust+azdu /Îk0k09 (out of the cone). The radial beatings in
this region, of period 2p /Kg, are a consequence of the radial
wave vector gapKg.

Figure 3(b) shows the impulse response mode fork09.0
andb,a2/2k09 (Vg real andKg imaginary). As in the previ-
ous case, the mode is singular at the coner = ust
+azdu /Îk0k09, but damped oscillations are now temporal, of
period 2p /Vg, as corresponds to the frequency gapVg in the
dispersion curve. Out of the conefr . ust+azdu /Îk0k09g the
mode is exponentially localized.

Modes in media with anomalous dispersion— i.e., with
k09,0 and b.a2/2k09 (real Vg and Kg) — exhibit rather
different characteristics[Fig. 3(c)]. These modes are no
longer singular and of X type, but regular and, say, of O type.
The damped oscillations decay temporally and radially as 1/t
and 1/r, respectively, with periods 2p /Vg and 2p /Kg. The

FIG. 2. Dispersion curve of the wave modes in a medium with
(a) normal dispersion and(b) anomalous dispersion.
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absence of singularities is a consequence of the actual limi-
tation that the elliptic dispersion curve imposes to the uni-

form spectrumf̂sVd=1.

III. CLASSIFICATION OF WAVE MODES

Numerical integration of Eq.(8) with a given dispersion
curve (specified by the values ofa, b, andk09) but different

(bell-shaped) spectral amplitude functionsf̂sVd, having also
different(but finite) bandwidthsDV [alternatively, numerical
integration of

Fa,bsr,t + azd =E
−`

`

dsFa,b
sid sr,t + az− sd s15d

where fstd is the inverse Fourier transform off̂sVd], shows
much richer and complex spatiotemporal features in com-
parison with the case of infinite bandwidth. These features
strongly depend on the choice of the spectral bandwidthDV,
while no essentially new properties arise from the specific

choice of f̂sVd (Gaussian, Lorentzial, two-side exponential,
etc.). Modes with finite bandwidth may exhibit mixed, more
or less pronounced radial and temporal oscillations, along
with incipient or strong X-wave(O-wave), focus wave mode,
or Bessel structure, as explained throughout this section(see
also the following figures). The purpose of this section is to
perform a simple, comprehensive classification of wave
modes in dispersive media. In the remainder of this paper,
DV will refer to any suitable definition of the half-width of

the bell-shaped spectral amplitude functionf̂sVd.
Given a mode of parametersa andb satisfying conditions

(4) and (5), propagating in a dispersive material with GVD
k09, and some spectral bandwidthDV satisfying Eq.(2), we
have found it convenient to define the three following char-
acteristic lengths:(1) the mode PM length

Lp ;
1

b
, s16d

(2) the mode walk-off or GVM length

Lw ;
1

aDV
, s17d

measuring, respectively, the axial distances at which the
mode becomes phase mismatched and walks offwith respect
to a plane pulse of the same spectrum in the same medium,
and (3) the GVD length

Ld ;
1

k09sDVd2 , s18d

or distance at which the mode(invariable) duration differs
significantly from that of the(broadening) plane pulse. Note
that, as defined,Lp, Lw, andLd can be positive or negative. In
terms of the mode lengths the transversal dispersion relation
(7) takes the form

KsVd =Î2k0SLp
−1 + Lw

−1Vn +
1

2
Ld

−1Vn
2D , s19d

whereVn=V /DV is the normalized detuning, which ranges
in f−1, +1g for V within the bandwidthDV. Then, they are
the values of the mode lengthsLp, Lw, andLd that determine
the form of the dispersion curve within the spectral band-
width and, hence, the parameters that determine the spa-
tiotemporal structure of the mode, as shown throughout this
section. We analyze here three extreme cases— namely,

uLpu ! uLwu,uLdu PM - dominated case,

uLwu ! uLpu,uLdu GVM - dominated case,

uLdu ! uLpu,uLwu GVD - dominated case,

which represent three well-defined, opposite experimental
situations and which allow us also to understand, at least
qualitatively, the features of general, intermediate cases.

For illustration, we have evaluated the characteristic
lengths of wave modes of different frequenciesv0 that
propagate in LBO at the phase and group velocities of the
corresponding fundamental waves of half-frequency. In Fig.
4, the bandwidthsDV=v0/2pN correspond to “N-cycle”
pulses[duration,sDVd−1=NT0, T0=2p /v0 period] at each
frequencyv0. The valueN=10 in Fig. 4(a) leads to a pulse

FIG. 3. Gray-scale plot of the amplitudeuFa,b
sid u of the impulse response wave modes.(a) Normal dispersionk09.0 with b.a2/2k09 (Vg

imaginary, transversal wave vector gapKg real). (b) Normal dispersionk09.0 with b,a2/2k09 (detuning gapVg real, Kg imaginary). (c)
Anomalous dispersionk09,0 with b.a2/2k09 (Vg and Kg real). Normalized local time and radial coordinate are defined ass= uVgust
+azd andr= uKgur, respectively
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duration sDVd−1,20 fs at v0=3.55 fs−1sl=0.53mmd, of
the same order as in previous experiments and numerical
simulations. Figure 4(b) shows, in contrast, the extreme case
of “single-cycle” wave modes. Generally speaking, modes of
long enough duration belong to, or participate mostly in, the
PM-dominated case[as in Fig. 4(a) for most frequencies],
modes of some(still unspecified) intermediate duration be-
long to the GVM-dominated case, and extremely short
modes to the GVD-dominated case, sinceLp is independent
of bandwidth, butLp andLd are inversely proportional toDV
and DV2, respectively. Depending, however, on the relative
values ofa, b, andk09 (particularly when one or two of them
are very small), the GVM-dominated case, even the PM-
dominated case, can extend down to the single-cycle regime
[as in Fig. 4(b) for most frequencies] or, on the contrary, the
GVM-dominated case, even the GVD-dominated case, apply
to considerably long modes[as in the vicinity of the two
singularities of theLp curve of Fig. 4(a)].

A. Phase-mismatch-dominated case: Pulsed Bessel-beam-type
modes

Consider first modes withuLpu! uLwu , uLdu. When Lp.0,
the dispersion curve within the spectral bandwidth can be
approached by the real constant valueKsVd.s2k0Lp

−1d1/2 or

KsVd . Î2k0b sif b . 0d s20d

[see Fig. 5(a)], regardless the exact dispersion curve is an
actual hyperbola or ellipse[as in Fig. 5(b)]— that is, inde-
pendently of the sign of material group velocity dispersion.
Wave modes under these conditions can only have superlu-
minal phase velocitysb.0d, but superluminal or subluminal
group velocity(a.0 or a,0, respectively), and will adopt,
from Eqs.(8) and (20), the approximate factorized form

Fa,bsr,t + azd . fst + azdJ0sÎ2k0brd s21d

of a PBB of transversal size of the order ofs2k0bd−1/2.

Figure 5(c) shows the prototype PBB of this kind of wave

mode [Eq. (21)] with a Gaussian spectrumf̂sVd — that is,
the limiting caseuLp/Lwu=0, uLp/Ldu=0—or the horizontal
thick lines of Figs. 5(a) and 5(b). In Fig. 5(d) we show, for
comparison, the wave mode withuLp/Lwu=0.25, uLp/Ldu
=0.25 and with the same Gaussian spectrum, obtained nu-
merically from Eq.(8). We see that the wave mode preserves
a spatiotemporal structure similar to that of the prototype
PBB of Fig. 5(c), even if uLpu is not much smaller, but simply
smaller thanuLwu and uLdu. Small differences can be under-
stood as incipient focus wave mode and O-wave-type behav-
ior, as described in the following sections.

B. Group-velocity-mismatch-dominated case: Envelope focus
wave modes

The caseuLwu! uLpu , uLdu leads to a new kind of wave
mode that has not been reported. The dispersion curve within
the bandwidth is now of the form of the horizontal parabola
KsVd.2sk0Lw

−1Vnd1/2 with vertex atV=0 or

KsVd . Î2k0aV s22d

[see Fig. 6(a)], regardless of whether material dispersion is
normal [as in Fig. 6(b)] or anomalous. For modes with su-
perluminal group velocitysa.0d, the horizontal parabola is
right handed[as in Figs. 6(a) and 6(b)], and left handed for
subluminal modessa,0d. Independently of the group veloc-

FIG. 4. Characteristic lengths of extraordinary second-harmonic
wave modes of different frequencies in the visible range that travel
at the phase and group velocities of the ordinary fundamental waves
in LBO at room temperature. Mode bandwidths areDV /v0

=1/2pN, with (a) N=10 and(b) N=1.

FIG. 5. (a) Dispersion curve within the bandwidth for
uLpu / uLwu→0, uLpu / uLdu→0 (thick curve) and for Lp/Lw=−0.25,
Lp/Ld=−0.25 (thin curve). (b) The same as in(a) but also outside

the bandwidth of the Gaussian spectrum(in arbitrary units) f̂sVd
=expf−sV /DVd2g. (c) and (d) Gray-scale plots of the amplitude

uFa,bu of (c) the PBB of Eq. (21) with spectrum f̂sVd=exp
3f−sV /DVd2g (i.e., fstd~expf−s2DVtd2g) and of (d) the mode
with Lp/Lw=−0.25,Lp/Ld=−0.25 and same spectrum as in(c), nu-
merically calculated from Eq.(8). Normalized coordinates ares
=st+azdDV, r=r / r0, with r0=s2k0bd−1/2.
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ity, phase velocity can be superluminalsb.0d or subluminal
sb,0d. In any case, their spatiotemporal form can be ap-
proached by Eq.(8) with KsVd given by Eq.(22). Moreover,

with the two-sided exponential spectrum f̂sVd
=s2p /DVdexps−uVu /DVd, Eq. (8) yields

Fa,bsr,t + azd .
− it0

t + az− it0
expF ik0uaur2

2st + az− it0dG
s23d

for superluminal modessa.0d, and the complex conjugate
of the right-hand side of Eq.(23) for subluminal modes
sa,0d. In Eq. (23), t0;sDVd−1 characterizes the mode du-
ration. The mode spot size at pulse centerst+az=0d can be
characterized byr0=s2/k0DVuaud1/2.

The functional form of the reduced envelope in Eq.(23) is
similar to the fundamental Brittigham-Ziolkowski focus
wave mode(FWM) [22,23] and, as such, will be called the
envelope focus wave mode(eFWM). There are, however,
important physical differences between them, which can be
understood for the respective expressions of the complete
fields E of both kinds of waves—namely,

Ea,bsr,z,td .
− it0

t + az− it0
expF ik0uaur2

2st + az− it0dG
3exps− ibzdexps− iv0t + ik0zd, s24d

for the envelope focus wave mode,

Esr,z,td =
− it0

t − it0
expF ik0r

2

2cst − it0dGexps− iv0t − ik0zd,

s25d

with k0=v0/c, for the fundamental FWM[23]. The funda-
mental FWM is a localized, stationaryfree-spacewave
whose envelope propagates at luminal group velocityc,
whereas the carrier oscillations backpropagate at the same
velocity c. The eFWM is also a stationary, localized wave
with the same intensity distribution as the fundamental
FWM, but propagates in adispersive mediumat slightly su-
perluminal or subluminal group velocity 1/sk08−ad. The car-
rier oscillations propagate in the same direction at slightly
superluminal or subluminal phase velocityv0/ sk0−bd.

Figure 6(c) shows the prototype eFWM of this kind of
wave mode, obtained from numerical integration of Eq.(8)
with the approximate dispersion curveKsVd=Î2k0aV [thick
curves in Figs. 6(a) and 6(b)] — i.e., in the limiting case
uLw/Lpu=0, uLw/Ldu=0) — and a Gaussian spectrum. To pur-
sue the validity of the model eFWM to describe this kind of
wave mode, we have also evaluated the wave mode field in
some nonlimiting cases with the same Gaussian spectrum.
For uLw/Lpu=1/8, uLw/Ldu=1/8 [thin curves in Figs. 6(a) and
6(b), label 1], the mode is nearly undistinguishable from the
prototype eFWM, despite the dispersion curve differing sig-
nificantly from the limiting one. Even for the relatively large
ratios uLw/Lpu=1/3, uLw/Ldu=1/3 [thin curves in Figs. 6(a)
and 6(b), label 2], the calculated wave mode[see Fig. 6(d)]
exhibits the same eFWM structure, with some incipient eX-
wave behavior because of the actual hyperbolic form(not
parabolic) of the dispersion curve, as explained in the next
section.

C. Group-velocity-dispersion-dominated case: Envelope
X- and envelope O-type modes

1. Normal group velocity dispersion: Envelope X waves

We consider finally modes withuLdu! uLpu , uLwu or modes
of short enough duration, or propagating in a medium with
large enough GVD. When material dispersion is normal
sk09.0d, the dispersion curve within the bandwidth ap-
proaches the X-shaped curve[see Fig. 7(a)]

KsVd . Îk0k09uVu s26d

of the limiting caseuLd/Lpu , uLd/Lwu=0. The actual dispersion
curve of a mode may be slightly shifted towards negative
frequencies[as in Figs. 7(a) and 7(b), labels 1 and 2] or
positive frequencies for modes with superluminalsa.0d or
subluminalsa,0d group velocities, respectively. For modes
with superluminal phase velocitysb.0d, KsVd is real every-
where [Fig. 7(b), label 1], but for modes with subluminal
phase velocity there is a narrow frequency gap aboutV=0
[Fig. 7(b), label 2]. A prototype wave mode for this case can
be obtained by introducing the approximate dispersion curve
of Eq. (26) into Eq. (8). With the two-side exponential spec-

trum f̂sVd=s2p /DVdexps−V /DVd we obtain

FIG. 6. (a) Dispersion curve within the bandwidth forLw

=10/k0, Lw/Lp→0, Lw/Ld→0 (thick curve), for Lw=10/k0,
Lw/Lp=1/8, Lw/Ld=1/8 (thin curve, label 1), and for Lw=10k0,
Lw/Lp=1/3, Lw/Ld=1/3 (thin curve, label 2). (b) The same as in
(a) but also outside the bandwidth of the Gaussian spectrum(in

arbitrary units) f̂sVd=expf−sV /DVd2g. (c) and(d) Gray-scale plots
of the amplitudeuFa,bu of (c) the prototype eFWM[thick dispersion

curve in (a)] with spectrumf̂sVd=expf−sV /DVd2g and of (d) the
mode withLw/Lp=1/3,Lw/Ld=1/3 [thin dispersion curve 2 in(a)],
numerically calculated from Eq.(8). Normalized coordinates are
s=st+azdDV, r=r / r0, with r0=s2/k0DVuaud1/2.
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Fa,bsr,t + azd . ReH t0

Îk0k09r
2 + ft0

2 + ist + azd2gJ ,

s27d

where t0;sDVd−1 measures the pulse duration. Equation
(27) is the eX wave recently described in Ref.[13] as an
exact, stationary, and localized solution of the paraxial wave
equation with luminal phase and group velocitiessa=b=0d
in media with normal GVD. The eX wave(27) is understood
here as an approximate expression for modes witha ,b such
that uLd/Lpu!1, uLd/Lwu!1. The spatiotemporal form of the
eX wave is shown in Fig. 7(c). For Ld/Lp=1/6 sb.0d,
Ld/Lw=1/6 [thin curves in Figs. 7(a) and 7(b), label 1], the
mode retains an X-shaped structure[Fig. 7(d)] despite the
dispersion curve differ significantly from the limiting one.
Incipient PBB behavior, or radial oscillations, originates
from the nearly horizontal dispersion curve in the central part
of the spectrum. ForLd/Lp=−1/6 sb,0d, Ld/Lw=1/6 [thin
curves in Figs. 7(a) and 7(b), label 2], the X-shaped mode
[Fig. 7(e)] shows instead incipient eFWM behavior(light is
within the cone), together with temporal oscillations arising
from the frequency gap in the dispersion curve.

2. Anomalous group velocity dispersion: Envelope O waves

When uLdu! uLpu , uLwu but GVD is anomalous, the disper-
sion curve within the bandwidth can be approached by the
ellipse centered onV=0 [Figs. 8(a) and 8(b), thick curves]
given by the expression

KsVd . Î2k0sb − uk09uV
2/2d. s28d

Note that the term withb, no matter how small it is, must be
retained to reproduce the real-valued part of the dispersion
curve. The group velocity of the mode can be slightly sub-
luminal sa,0d or superluminalsa.0d, as in Figs. 8(a) and
8(b) (thin curves), but the phase velocity of these modes is
always superluminalsb.0d. An approximate analytical ex-
pression for this type of mode can be obtained by introduc-
ing the approximate dispersion curve of Eq.(28) into Eq.(8).
Under condition uLdu! uLpu, the frequency gap Vg

.Î2b / uk09u is much smaller thanDV, so that the amplitude

spectrumf̂sVd can be assumed to take a constant value in the
integration domain of integral in Eq.(8), which then yields
the expression

Fa,b .
1

Îk0uk09ur
2 + st + azd2

3sinfÎ2b/uk09uÎk0uk09ur
2 + st + azd2g, s29d

of the same form as the O-type impulse response mode in
media with anomalous dispersion. Figure 8(c) shows its spa-
tiotemporal form. For comparison, the wave mode with
Ld/Lp=−1/6, Ld/Lw=−1/8 [Fig. 8(a), thin curve] and the
two-sided exponential spectrum[Fig. 8(b)] was calculated
from Eq. (8), and its O-shaped spatiotemporal form is de-
picted in Fig. 8(d).

FIG. 7. (a) Dispersion curve within the bandwidth forLd=10/k0, Ld/Lp→0, Ld/Lw→0, with Ld.0 (thick curve), for Ld=10/k0,
Ld/Lp=1/6,Ld/Lw=1/6 (thin curve, label 1), and forLd=10k0, Ld/Lp=−1/6,Ld/Lw=1/6 (thin line, label 2). (b) The same as in(a) but also

outside the bandwidth of the spectrum(in arbitrary units) f̂sVd=exps−uVu /DVd. (c) – (e) Gray-scale plots of the amplitudeuFa,bu of (c) the

prototype eX[thick dispersion curve in(a)] with exponential spectrumf̂sVd=expf−sV /DVd2g of (d) the mode withLd/Lp=1/6, Ld/Lw

=1/6 [thin dispersion curve 1 in(a)], and of (e) the mode withLd/Lp=−1/6, Ld/Lw=1/6 [thin dispersion curve 2 in(a)]. Normalized
coordinates ares=st+azdDV, r=r / r0, with r0=sk0k09DV2d−1/2.
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IV. NONPARAXIAL DESCRIPTIONS OF WAVE MODES

The purpose of this section is to show that the preceding
classification of wave modes in dispersive media in terms of
the characteristic lengths remains essentially unaltered when
performed from the more exact nonparaxial approach, if con-
ditions (2) of quasimonochromaticity and(4) and (5) of
quasiluminal group and phase velocities are satisfied.

We consider now the polychromatic Bessel beam

Esr,z,td =
1

2p
E

K real
dv f̂sv − v0dJ0sKrdexpsikzzdexps− ivtd,

s30d

whereK and kz must be related byK=Îk2svd−kz
2 for each

monochromatic Bessel beam component to satisfy the Helm-

holtz equationDÊ+k2svdÊ=0. Stationarity of the intensity in
some moving reference frame requires the axial propagation
constantkz to be a linear function of frequency[8], a condi-
tion that is suitably expressed as

kzsVd = sk0 − bd + sk08 − adV. s31d

Equation (30) can be then rewritten in the formEsr ,z,td
=Fa,bsr ,t+azdexps−ibzdexps−iv0t+ ik0zd, where the re-
duced envelope is given by the same expression as in the
paraxial case—namely,

Fa,bsr,t + azd =
1

2p
E

KsVd real
dV f̂sVdJ0fKsVdrg

3expf− iVst + azdg, s32d

but with a transversal dispersion relationKsVd
=Îk2sVd−kz

2sVd given now by

KsVd = fs2k0b − b2d + 2sk0a + k08b − abdV

+ sk0k09 + 2k08a − a2dV2g1/2 s33d

up to second order in dispersionfksVd=k0+k08V+k09V
2/2g.

Equations(32) and(33) describe the most general form of
nonparaxial wave modes in media with second-order disper-
sion and contain as particular cases the nonparaxial wave
modes in free space described in previous studies. Indeed, in
free space(k0=v0/c, k08=1/c, k09=0, with c the speed of light
in vacuum), Eqs.(32) and (33) yield the general expression
(7) of Ref. [24] for free-space FWM’s, if the identifications
a=s1−gd /c andb=v0a+2gbs are made(g andbs being the
the free parameters defined in Ref.[24]). The case witha
=0 and b=−2k0 yields the original Brittigham’s FWM
[22,23] with forward propagating envelope and backward
propagating carrier oscillations. The choiceb=v0a leads to
the Bessel-X pulse of cone angleu=s2cad1/2 or X wave with
narrow spectral amplitude centered at an optical frequency,
introduced by Saari and Sonajalg in Ref.[16], and demon-
strated in Ref.[17].

As for the nonparaxial description of quasiluminal wave
modes in dispersive media, we note that the termsb2, ab,
and a2 in Eq. (33) can be neglected in comparison with
2k0b, k0a, and 2k08a, respectively, if conditions(4) and(5) of
quasiluminality are satisfied, to obtain the approximate ex-
pression

KsVd . Î2sk0 + k08Vdsb + aVd + k0k09V
2 s34d

for the nonparaxial dispersion relation of quasiluminal
modes. It then follows that the paraxial dispersion curve[Eq.
(7)] may significantly differ, under the only condition of
quasiluminality, from the nonparaxial one[Eq. (34)]. In fact,
it is not difficult to find a set of parameters for which the
nonparaxial dispersion curve is, for instance, a vertical hy-
perbola, whereas the paraxial dispersion curve is a horizontal
hyperbola[see Fig. 9(a)]. If the additional condition of quasi-
monochromaticity is imposed, however, both the paraxial
and nonparaxial dispersion curves are essentially the same
within the bandwidthand, hence, the spatiotemporal struc-
ture of the wave mode. Writingk0/k08<v0 for transparent
dispersive materials, we can rewrite Eq.(34) as

KsVd < Î2k0s1 + V/v0dsb + aVd + k0k09V
2 s35d

or, in terms of the characteristic lengths,

FIG. 8. (a) Dispersion curve within the bandwidth foruLdu / uLpu
→0, uLdu / uLwu→0, with Ld,0 (thick line), and for Ld/Lp=−1/6,
Ld/Lw=−1/8 (thin curve). (b) The same as in(a) but also outside

the bandwidth of the spectrum(in arbitrary units) f̂sVd=exp
3s−uVu /DVd. (c) Gray-scale plot of the amplitudeuFa,bu of the eO
wave of Eq. (29), (d) of the mode withLd/Lp=−1/6, Ld/Lw=
−1/8, and the exponential spectrum of(b), numerically calculated
from Eq. (8). Normalized coordinates ares=st+azdÎ2b / uk09u, r
=Î2k0br.
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KsVd <Î2k0FS1 +
DV

v0
VnDsLp

−1 + Lw
−1Vnd +

1

2
Ld

−1Vn
2G .

s36d

Since sDV /v0duVnu!1, the nonparaxial dispersion curve
within the bandwidth can be approached by the paraxial
one—that is, by Eq.(19). This point is illustrated in Fig. 9(b)
for the worst possible situation(widest possible bandwidth)
of a single-cycle modesDV /v0=1/2pd. We can then affirm
that the description and classification in Sec. III of quasimo-
nochromatic, quasiluminal wave modes in terms of their
characteristic lengths is independent of the approach used.

To illustrate the relationship between the paraxial and
nonparaxial approaches and the type of results we can expect
from the paraxial one, we consider wave modes of any band-
width DV propagating in normally dispersive mediask09.0d
with

a = k08 − Îk08
2 + k0k09 . − k0k09/2k08, s37d

b = −
k0sk08 − Îk08

2 + k0k09d
Îk08

2 + k0k09
. k0

2k09/2k08
2, s38d

[see Figs. 10(a) and 10(b) for propagation in fused silica], so
that the nonparaxial dispersion curve is, from Eq.(34), the
(exactly) horizontal straight line

KsVd = K ;Î k0
3k09

k08
2 + k0k09

.Îk0
3k09

k08
2 , s39d

and the corresponding nonparaxial wave modes are the
dispersion-free, diffraction-free PBB’sFa,bsr ,t+azd= fst
+azdJ0sKrd studied in Ref.[10]. The approximate equalities
in Eqs. (37)–(39) hold for weakly dispersive materials such
thatk09!k08

2/k0, in which casea andb satisfy conditions(4)
and(5) of quasiluminality for the group and phase velocities.
As seen in Figs. 10(a) and 10(b), this is the case of fused
silica at any visible carrier frequency.

For these PBB’s, it is easy to see that the paraxial and
nonparaxial descriptions become undistinguishable, in spite
of the apparent drawback that PBB’s are no longer exact
solutions of the paraxial wave equation in dispersive media
[when k09Þ0, the paraxial dispersion curve(7) is never a
horizontal straight line]. In fact, whenk09!k08

2/k0, the rela-
tionshipuLpu! uLwu! uLdu is satisfied for any mode bandwidth
down to the single-cycle limit[see Fig. 10(c) for the case of
fused silica]. Accordingly, these modes are of PBB type; that
is, the paraxial dispersion curve within the bandwidth can be
approached by an horizontal straight line[see Fig. 10(d) for
v0=2 fs−1 in fused silica]. Finally, the paraxial prototype
PBB for these modes is given, from Eq.(21), by Fa,bsr ,t
+azd= fst+azdJ0sKrd, with K=Îk0

3k09 /k08
2 — that is, by the

same expression as in the nonparaxial approach.

V. CONCLUSIONS

Summarizing, we have described and classified the quasi-
monochromatic, pulsed versions of Bessel light beams with
the property of being localized and remaining stationary
(diffraction-free and dispersion-free) during propagation in a

FIG. 9. (a) Paraxial and nonparaxial transversal dispersion
curves of the modes of carrier frequencyv0=4 fs−1 with a
=300 mm−1 fs, and b=400 mm−1 in fused silica (k0

=19 530 mm−1, k08=4988 mm−1 fs, andk09=77 mm−1 fs2). (b) The
same as in(a) but only within the bandwidth of the shortest(widest
spectrum), single-cycle wave modesDV=v0/2pd.

FIG. 10. (a) and(b) Values ofa andb from Eqs.(37) and(38)
at different carrier frequencies in fused silica, with the refraction
index obtained from Ref.[19]. (c) Characteristic lengths for the
limiting case of single-cycle modessDV=v0/2pd, with a and b
given by Eqs.(37) and(38) at different frequencies in fused silica.
(d) For v0=2 fs−1 and DV=v0/2p, comparison between the
paraxial and nonparaxial dispersion curves within the bandwidth,
given, respectively, by Eqs.(7) and (33).
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dispersive material with slightly superluminal or subluminal
phase and group velocities. As for the wave mode descrip-
tion, we have found the analysis of the transversal dispersion
curve KsVd, which can be directly related to far field mea-
surements in experiments, to be a useful tool for understand-
ing the spatiotemporal mode structure. Wave modes have
been classified into three broad categories: PBB-like,
eFWM-like, and eX-like(eO-like) modes, depending on the
relative values of their phase and group velocity mismatch
with respect to a plane pulse, and defeated GVD, as mea-
sured by the mode phase-mismatch lengthLp, group-
mismatch lengthLw, and the dispersion lengthLd.

We have verified that the paraxial approach leads to the
same results as would be obtained from the more accurate
nonparaxial analysis when the conditions of narrow band-
width (2) and of quasiluminality(4) and(5) are satisfied. All
previously reported Bessel beams, X waves, Bessel-X waves,
or focus wave modes generated by(linear or nonlinear) op-
tical means satisfy indeed these requirements.
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